Equiangular tight frames (ETFs) are optimal packings of lines through the origin. At the moment, they are the subject of a rapidly growing literature. In fact, there have been quite a few updates since my last post on this subject (less than five months ago), and I’ve revamped the table of ETFs accordingly. What follows is a brief discussion of the various developments:

**1. There is an ETF of 76 vectors in **

See this paper. Last time, I mentioned a recent proof that there is no ETF of 76 vectors in . It turns out that a complex ETF of this size does exist. To prove this, it actually seems more natural to view the vectors as columns of a matrix whose row vectors sum to zero. As a lower-dimensional example, consider the following matrix:

Continue reading Recent developments in equiangular tight frames, II