Soledad Villar recently posted her latest paper on the arXiv (joint work with Afonso Bandeira, Andrew Blumberg and Rachel Ward). This paper reduces an instance of cutting-edge data science (specifically, shape matching and point-cloud comparison) to a semidefinite program, and then investigates fast solvers using non-convex local methods. (Check out her blog for an interactive illustration of the results.) Soledad is on the job market this year, and I read about this paper in her research statement. I wanted to learn more, so I decided to interview her. I’ve lightly edited her responses for formatting and hyperlinks:

Continue reading A polynomial-time relaxation of the Gromov-Hausdorff distance