Joey Iverson recently posted our latest paper with John Jasper on the arXiv. This paper can be viewed as a sequel of sorts to our previous paper, in which we introduced the idea of hunting for Gram matrices of equiangular tight frames (ETFs) in the adjacency algebras of association schemes, specifically group schemes. In this new paper, we focus on the so-called Schurian schemes. This proved to be a particularly fruitful restriction: We found an alternate construction of Hoggar’s lines, we found an explicit representation of the “elusive” packing from the real packings paper (based on a private tip from Henry Cohn), we found an packing involving the Mathieu group (this one beating the corresponding packing in Sloane’s database), we found some low-dimensional mutually unbiased bases, and we recovered nearly all small sized ETFs. In addition, we constructed the first known infinite family of ETFs with Heisenberg symmetry; while these aren’t SIC-POVMs, we suspect they are related to the objects of interest in Zauner’s conjecture (as in this paper, for example). This blog entry briefly describes the main ideas in the paper.

Continue reading Optimal line packings from finite group actions